Exercițiu rezolvat - Mulțimi, Operații cu mulțimi, clasa a VI-a

Exercițiu rezolvat - Mulțimi, Operații cu mulțimi, clasa a VI-a

 

Se consideră mulțimile A={xx=2m+1, mN}A=\{x \mid x=2\cdot m+1,\ m\in\mathbb{N}\}și B={yy=3n+1, nN}B=\{y \mid y=3\cdot n+1,\ n\in\mathbb{N}\}.


Arătați că 15A15\in A, 16B16\in B, 2005AB2005\in A\cap Bși 2002BA2002\in B\setminus A.

 

Copilul tău are nelămuriri și la alte exerciții?

Trimite-mi cerința și-ți trimit explicația pas cu pas.

Comandă acum

Cauți pregătire la matematică și limba română?

Săptămânal, avem două întâlniri live pe Zoom. Explicăm materia școlară.

Vezi detalii

Vrei acces la sute de probleme rezolvate din clasele V–VIII?

Descoperă cursul cu sute de rezolvări video, explicate pas cu pas.

Cumpără cursul video